High Temperature Bipolar SiC Power Integrated Circuits

نویسنده

  • SALEH KARGARRAZI
چکیده

In the recent decade, integrated electronics implemented using wide bandgap semiconductor technologies such as Gallium Nitride (GaN) and Silicon Carbide (SiC) have been shown to be viable candidates in extreme environments (e.g high-temperature and high radiation). Such electronics have applications in down-hole drilling, automobile-, airand spaceindustries. In this thesis, integrated circuits (ICs) in bipolar 4H-SiC for high-temperature power applications are explored. In particular, device modelling, circuit design, layout design, and measurements are discussed for a range of circuits including operational amplifiers, linear voltage regulators, drivers for power switches, and power converters with integrated control. All the circuits demonstrated in this thesis were designed for operation over a wide temperature range, and nearly all were tested from 25 C up to 500 C. Circuit design in bipolar SiC technology involves challenges such as the fabrication process’ uncertainties and incomplete models of the devices. Furthermore, high temperature modelling of the integrated devices is needed for circuit design and simulation. On the device side, the current gain (β) of the Bipolar Junction Transistors (BJTs) varies over temperature due to the dopants’ ionization. Moreover, the integrated resistors vary non-monotonically over temperature because of two opposing phenomena: increasing dopants’ ionization and decreasing minority carrier mobility. From the circuit design viewpoint, techniques such as negative-feedback, temperature-insensitive biasing, buffering and Darlington stages, and amplifiers with fewer gain stages, were shown to be useful for high-temperature IC design in bipolar SiC. In this thesis, several high-temperature ICs in bipolar SiC were demonstrated. It is shown that the linear voltage regulator can be improved by using a tailored high-current lateral Darlington power device in the same fabrication process. This results in a high temperature high current power supply solution. Moreover, the drivers can be improved by design in order to provide higher voltage levels and peak currents, in order to drive different types of power devices (bipolar and MOSFET based). In addition, a DC-DC converter with fully integrated hysteretic control is designed taking advantage of several sub-circuits such as operational amplifier, Schmitt trigger and driver for the power switch. This study is followed by preliminary experimental results for the converter and controller IC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silicon Carbide Bipolar Integrated Circuits for High Temperature Applications

Silicon carbide (SiC) is a semiconductor that provides significant advantages for high-power and high-temperature applications thanks to its wide bandgap, which is several times larger than silicon. The resulting high breakdown field, high thermal conductivity and high intrinsic temperature (well above 600 °C) allow high temperature operation of SiC devices and relaxed cooling requirements. In ...

متن کامل

Electrical Performance of a High Temperature 32-I/O HTCC Alumina Package

A high temperature co-fired ceramic (HTCC) alumina material was previously electrically tested at temperatures up to 550 °C, and demonstrated improved dielectric performance at high temperatures compared with the 96% alumina substrate that we used before, suggesting its potential use for high temperature packaging applications. This paper introduces a prototype 32-I/O (input/output) HTCC alumin...

متن کامل

A High-Temperature, High-Voltage SOI Gate Driver IC with High Output Current and On-Chip Low-Power Temperature Sensor

High-temperature power conversion modules (DC-DC converters, inverters, etc.) have enormous potential in extreme environment applications, including automotive, aerospace, geothermal, nuclear, and well logging. Power-to-volume and power-to-weight ratios of these modules can be significantly improved by employing Silicon Carbide (SiC) based power switches (MOSFET or JFET). Wide bandgap material ...

متن کامل

High Power Bipolar Junction Transistors in Silicon Carbide

As a power device material, SiC has gained remarkable attention to its high thermal conductivity and high breakdown electric field. SiC bipolar junction transistors (BJTs) are interesting for applications as power switch for 600 V-1200 V applications. The SiC BJT has potential for very low specific on-resistances and this together with high temperature operation makes it very suitable for appli...

متن کامل

Promise and Challenges of High-Voltage SiC Bipolar Power Devices

Although various silicon carbide (SiC) power devices with very high blocking voltages over 10 kV have been demonstrated, basic issues associated with the device operation are still not well understood. In this paper, the promise and limitations of high-voltage SiC bipolar devices are presented, taking account of the injection-level dependence of carrier lifetimes. It is shown that the major lim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017